

Rudolf-Wissell-Str. 28a 37079 Göttingen, Germany

Phone: +49 551-50556-0
Fax: +49 551-50556-384
E-mail: sales@sysy.com
Web: www.sysy.com

Caspase3

Cat.No. 236 003; Polyclonal rabbit antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/ Storage	50 μg specific antibody, lyophilized. Affinity purified with the immunogen. Albumin was added for stabilization. For reconstitution add 50 μl H ₂ O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C to -80°C until use. Antibodies should be stored at +4°C when still lyophilized. Do not freeze! For detailed information, see back of the data sheet.
Applications	WB: not tested yet IP: not tested yet ICC: 1: 500 up to 1: 1000 IHC: not tested yet IHC-P: not tested yet
Immunogen	Synthetic peptide corresponding to AA 170 to 175 from mouse Caspase3 (UniProt Id: P70677)
Reactivity	Reacts with: human (P42574), rat (P55213), mouse (P70677), cow. Other species not tested yet.
Specificity	Recognizes cleaved and activated caspase 3.

TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Background

Cell proliferation, differentiation and apoptosis are central features of tissue homeostasis. Inhibition of apoptosis might be involved in the pathogenesis of cancer by extending cell life and growth. The activation of caspases, particularly **caspase 3**, appears to be a central part in most apoptotic pathways. The inactive caspase 3 protoenzyme is activated by proteolytic cleavage behind aspartic acid at position 175 leading to activated p17 and p12 fragments. In its active form caspase 3 cleaves many key proteins like the nuclear enzyme poly (ADPribose) polymerase (PARP).

Selected General References

The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation.

Sunyach C et al. J. Biol. Chem. (2007) PubMed:17121821

Effect of protein kinase C alpha, caspase-3, and survivin on apoptosis of oral cancer cells induced by staurosporine. Zhang YX et al. Acta Pharmacol. Sin. (2005) PubMed:16225760

Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis.

Tang D et al. J. Biol. Chem. (2000) PubMed:10734071

Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nicholson DW et al. Nature (1995) PubMed:7596430

CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme.

Fernandes-Alnemri T et al. J. Biol. Chem. (1994) PubMed:7983002

Access the online factsheet including applicable protocols at https://sysy.com/product/236003 or scan the QR-code.

FAQ - How should I store my antibody?

Shipping Conditions

 All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freezedried) and are stable in this form without loss of quality at ambient temperatures for several weeks.

Storage of Sealed Vials after Delivery

- Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized!
 Temperatures below zero may cause loss of performance.
- Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation.
- **Control peptides** should be kept at -20°C before reconstitution.

Long Term Storage after Reconstitution (General Considerations)

- The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle
 between freezing and thawing (to reduce frost-build-up), which is exactly what should be
 avoided. For the same reason, antibody vials should be placed in an area of the freezer that
 has minimal temperature fluctuations, for instance towards the back rather than on a door
 shelf.
- Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 20 µl)
 and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock
 concentration is affected by evaporation and adsorption of the antibody to the surface of the
 storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of
 activity.
- The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles.

Product Specific Hints for Storage

Control proteins / peptides

• Store at -20°C to -80°C.

Monoclonal Antibodies

- Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies.
- **Purified IgG** should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Polyclonal Antibodies

- Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable.
- Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is
 recommended. Adding a carrier protein like BSA will increase long term stability. Most of our
 antibodies already contain carrier proteins. Please refer to the data-sheet for detailed
 information.

Fluorescence-labeled Antibodies

• Store as a liquid with 1:1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure.

Avoid repeated freeze-thaw cycles for all antibodies!

FAQ - How should I reconstitute my antibody?

Reconstitution

- All our purified antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add
 the amount of deionized water given in the respective datasheet. If higher volumes are
 preferred, add water as mentioned above and then the desired amount of PBS and a
 stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies
 already contain albumin. Take this into account when adding more carrier protein.
 For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the
 solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled
 with paper.
- If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C.
- After reconstitution of fluorescence-labeled antibodies, add 1:1 (v/v) glycerol to a final
 concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in
 liquid state at -20°C.
- Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freezethaw cycles.
- Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.