

Rudolf-Wissell-Str. 28a 37079 Göttingen, Germany

Phone: +49 551-50556-0
Fax: +49 551-50556-384
E-mail: sales@sysy.com
Web: www.sysy.com

Abeta-pE3

Cat.No. 218 003; Polyclonal rabbit antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/ Storage	50 µg specific antibody, lyophilized. Affinity purified with the immunogen. Albumin and azide were added for stabilization. For reconstitution add 50 µl H ₂ O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C to -80°C until use. Antibodies should be stored at +4°C when still lyophilized. Do not freeze! For detailed information, see back of the data sheet.
Applications	WB: 1: 1000 (see remarks) IP: not tested yet ICC: not tested yet IHC: 1: 500 (see remarks) IHC-P: 1: 200 (see remarks)
Immunogen	Synthetic peptide corresponding to AA 3 to 7 from human Abeta-pE3 (UniProt Id: P05067)
Reactivity	Reacts with: human (P05067), rat (P08592), mouse (P12023). Other species not tested yet.
Specificity	Specific for Abeta-pE3.
Remarks	WB : Detects purified Abeta pE3. Complex samples like brain extracts still have to be tested. Boil membrane after blotting for 3min. IHC : Antigen retrieval with formic acid is required. IHC-P : Antigen retrieval with formic acid is required.

TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Background

Amyloid deposits, also called plaques, of Alzheimer's patients consist of several protein components like the amyloid **beta**-peptides (**Abeta**, **Aβ**) 1-40/42 and additional C- and N-terminally truncated and modified fragments. Very abundant are the isoaspartate (isoAsp)-Abeta and **pyroglu**tamyl (**pGlu**)-Abeta peptides. The latter are formed by cyclization of the N-terminal glutamate at position 3 or 11 catalyzed by glutaminyl cyclase (QC) resulting in very amyloidogenic and neurotxic variants of Abeta: **Abeta-pE3** and Abeta pE11.

In contrast to extracellular plaques that do not perfectly correlate with Alzheimer's disease intraneuronal Abeta accumulation and vascular Abeta deposits have gained more and more evidence to be among the crucial factors responsible for progressive neuron loss.

Selected References for 218 003

Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β.

Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, et al. Nature (2012) 4857400: 651-5. . **IHC, WB**

A Screen of Plant-Based Natural Products Revealed That Quercetin Prevents Pyroglutamylated Amyloid- β (A β 3(pE)-42) Uptake in Astrocytes As Well As Resulting Astrogliosis and Synaptic Dysfunction.

Arndt H, Bachurski M, Yuanxiang P, Franke K, Wessjohann LA, Kreutz MR, Grochowska KM

Molecular neurobiology (2024):.. WB, ICC; tested species: rat

Novel Vaccine against Pathological Pyroglutamate-Modified Amyloid Beta for Prevention of Alzheimer's Disease.

Zagorski K, King O, Hovakimyan A, Petrushina I, Antonyan T, Chailyan G, Ghazaryan M, Hyrc KL, Chadarevian JP, Davtyan H, Blurton-Jones M, et al.

International journal of molecular sciences (2023) 2412: . . IHC; tested species: mouse

Posttranslational modification impact on the mechanism by which amyloid-β induces synaptic dysfunction.

Grochowska KM, Yuanxiang P, Bär J, Raman R, Brugal G, Sahu G, Schweizer M, Bikbaev A, Schilling S, Demuth HU, Kreutz MR, et al.

EMBO reports (2017) 186: 962-981.. ICC; tested species: rat

Glutaminyl cyclase in human cortex: correlation with (pGlu)-amyloid-β load and cognitive decline in Alzheimer's disease. Morawski M, Schilling S, Kreuzberger M, Waniek A, Jäger C, Koch B, Cynis H, Kehlen A, Arendt T, Hartlage-Rübsamen M, Demuth HU. et al.

Journal of Alzheimer's disease: JAD (2014) 392: 385-400. . IHC; tested species: human

Brain pyroglutamate amyloid- β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic.

Hook G, Yu J, Toneff T, Kindy M, Hook V

Journal of Alzheimer's disease: JAD (2014) 411: 129-49. . IHC; tested species: mouse

Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration.

Becker A, Kohlmann S, Alexandru A, Jagla W, Canneva F, Bäuscher C, Cynis H, Sedlmeier R, Graubner S, Schilling S, Demuth HU, et al.

BMC neuroscience (2013) 14: 108. . IHC; tested species: human

Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology.

Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T

Brain pathology (Zurich, Switzerland) (2012) 224: 547-61. . IHC; tested species: human

Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated A β is induced by pyroglutamate-A β formation.

Alexandru A, Jagla W, Graubner S, Becker A, Bäuscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Rönicke R, Reymann KG, et al.

The Journal of neuroscience: the official journal of the Society for Neuroscience (2011) 3136: 12790-801. IHC

Access the online factsheet including applicable protocols at https://sysy.com/product/218003 or scan the QR-code.

FAQ - How should I store my antibody?

Shipping Conditions

 All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freezedried) and are stable in this form without loss of quality at ambient temperatures for several weeks.

Storage of Sealed Vials after Delivery

- Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized!
 Temperatures below zero may cause loss of performance.
- Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation.
- **Control peptides** should be kept at -20°C before reconstitution.

Long Term Storage after Reconstitution (General Considerations)

- The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle
 between freezing and thawing (to reduce frost-build-up), which is exactly what should be
 avoided. For the same reason, antibody vials should be placed in an area of the freezer that
 has minimal temperature fluctuations, for instance towards the back rather than on a door
 shelf.
- Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 20 µl)
 and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock
 concentration is affected by evaporation and adsorption of the antibody to the surface of the
 storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of
 activity.
- The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles.

Product Specific Hints for Storage

Control proteins / peptides

• Store at -20°C to -80°C.

Monoclonal Antibodies

- Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies.
- **Purified IgG** should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Polyclonal Antibodies

- Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable.
- Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is
 recommended. Adding a carrier protein like BSA will increase long term stability. Most of our
 antibodies already contain carrier proteins. Please refer to the data-sheet for detailed
 information.

Fluorescence-labeled Antibodies

• Store as a liquid with 1:1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure.

Avoid repeated freeze-thaw cycles for all antibodies!

FAQ - How should I reconstitute my antibody?

Reconstitution

- All our purified antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add
 the amount of deionized water given in the respective datasheet. If higher volumes are
 preferred, add water as mentioned above and then the desired amount of PBS and a
 stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies
 already contain albumin. Take this into account when adding more carrier protein.
 For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the
 solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled
 with paper.
- If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C.
- After reconstitution of fluorescence-labeled antibodies, add 1:1 (v/v) glycerol to a final
 concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in
 liquid state at -20°C.
- Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freezethaw cycles.
- Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.