GluA
Cat.No. 182 403; Polyclonal rabbit antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/ Storage
50 µg specific antibody, lyophilized. Affinity purified with the immunogen. Albumin was added for stabilization. For reconstitution add 50 µl H2O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use.

For detailed information, see back of the data sheet.

Applications
WB: 1 : 1000 (AP staining)
IP: not tested yet
ICC: not tested yet
IHC: 1 : 100 up to 1 : 500 (see remarks)
IHC-P/FFPE: not tested yet
EM: yes

Immunogen
Recombinant protein corresponding to AA 742 to 798 from rat GluA1 (UniProt Id: P19490)

Reactivity
Reacts with: human (P42261, P42262, P42263, P48058), rat (P19490, P19491, P19492, P19493), mouse (P23818, P23819, Q9Z2W9, Q9Z2W8).
Other species not tested yet.

Specificity
Raised against GluA 1 but, due to sequence homology, likely to crossreact with GluA 2, 3, and 4.

Remarks
IHC: This antibody requires antigen retrieval with pepsin according to: Lorincz A & Nusser Z (2008).

The antibody is also suitable for EM based replica technique.

TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Selected References for 182 403

Objective quantification of nanoscale protein distributions.
Szoboslay M, Kirits Z, Nusser Z
Scientific reports (2017) 71: 15240. EM; tested species: mouse

Novel application of stem cell-derived neurons to evaluate the time- and dose-dependent progression of excitotoxic injury.
Gut IJ, Beske PH, Hubbard KS, Lyman ME, Hamilton TA, McKinni PM
PLoS one (2013) 8: e64423. WB

An ER Assembly Line of AMPA-Receptor Controls Excitatory Neurotransmission and Its Plasticity.
Neuron (2019) . EM; tested species: mouse

KV10.1 opposes activity-dependent increase in Ca2+ influx into the presynaptic terminal of the parallel fibre - Purkinje cell synapse.
The Journal of physiology (2014) . WB

Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.
Nature (2012) 4867402: 256-60. WB

Selected General References

A nomenclature for ligand-gated ion channels.
Collingridge GL, Olsen RW, Peters J, Spedding M

Differential regulation of dendrite complexity by AMPA receptor subunits GluR1 and GluR2 in motor neurons.
Prithviraj R, Kelly KM, Espinosa-Lewis R, Hexom L, Clark AB, Inglis PM

Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats.
Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A

Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2.

Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method.
Nagy GG, Al-Ayyan M, Andrew D, Fukaya M, Watanabe M, Tod AJ

Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2.
Passafaro M, Nakagawa T, Sala C, Sheng M

The influence of glutamate receptor 2 expression on excitotoxicity in Glu2 null mutant mice.
Iihara K, Joo DT, Barrantes F, Taverna FA, Lourensen S, Orser BA, Roder JC, Tyrmski M

PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses.
Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, Collingridge GL, Isaac JT

Background

Ionotropic glutamate receptors (iGlurS) mediate rapid excitatory neurotransmission in the mammalian CNS. They can be subdivided into three major groups, the AMPA/GluA, NMDA/GluN and kainate/GluK receptors (KARs). mRNAs coding for glutamate receptors are substrates for adenosine deaminase acting on RNA (ADAR) that increases the diversity of these proteins. Glutamate receptors of the AMPA subtype are monovalent cation channels and are composed of the four AMPA subunits GluA 1, GluA 2, GluA 3, and GluA 4.
FAQ - How should I store my antibody?

Shipping Conditions

- All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freeze-dried) and are stable in this form without loss of quality at ambient temperatures for several weeks.

Storage of Sealed Vials after Delivery

- Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized! Temperatures below zero may cause loss of performance.
- Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation.
- Control peptides should be kept at -20°C before reconstitution.

Long Term Storage after Reconstitution (General Considerations)

- The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle between freezing and thawing (to reduce frost-build-up), which is exactly what should be avoided. For the same reason, antibody vials should be placed in an area of the freezer that has minimal temperature fluctuations, for instance towards the back rather than on a door shelf.
- Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 10 µl) and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock concentration is affected by evaporation and adsorption of the antibody to the surface of the storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of activity.
- The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles.

Product Specific Hints for Storage

Control proteins / peptides:

- Store at -20°C to -80°C.

Monoclonal Antibodies

- Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies.
- Purified IgG should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Polyclonal Antibodies

- Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable.
- Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is recommended. Adding a carrier protein like BSA will increase long term stability. Most of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Fluorescence-labeled Antibodies

- Store as a liquid with 1 : 1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure.

Avoid repeated freeze-thaw cycles for all antibodies!

FAQ - How should I reconstitute my antibody?

Reconstitution

- All our antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add the amount of deionized water given in the respective datasheet. If higher volumes are preferred, add water as mentioned above and then the desired amount of PBS and a stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies already contain albumin. Take this into account when adding more carrier protein.
- For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled with paper.
- If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C.
- After reconstitution of fluorescence-labeled antibodies, add 1 : 1 (v/v) glycerol to a final concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in liquid state at -20°C.
- Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freeze-thaw cycles.
- Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.